If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+100x-3000=0
a = 1; b = 100; c = -3000;
Δ = b2-4ac
Δ = 1002-4·1·(-3000)
Δ = 22000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22000}=\sqrt{400*55}=\sqrt{400}*\sqrt{55}=20\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-20\sqrt{55}}{2*1}=\frac{-100-20\sqrt{55}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+20\sqrt{55}}{2*1}=\frac{-100+20\sqrt{55}}{2} $
| 3w-5+w=23 | | 10w+9=4w-9 | | I’d+8=4 | | 3y+4-y=22 | | k^2+6k+34=169 | | X-6+2(4+x)=8x+4 | | 19-2k=2k-1 | | 61=2y+3 | | 7+a/5=4 | | ((6x^2)+(8/3x)-(10/3)=0 | | 3=5n=5(n=2)-7 | | 12−6x=24. | | -3x-x=-52 | | 11x+48=81 | | 4x-25=155 | | (13x+10)+(10x+78)=180 | | 13x-79=5x+9 | | 6^n=36 | | X=16000+(1y)+(2y) | | 9x11-6=180 | | 12x=$3.00 | | (x+x+2)4=189.5 | | 8b+3=3b+13 | | 9x-6+8x-1=180 | | 118=10x | | -8-118=-6r-8r | | 2(+4)+1-5x=3(1-x)+7 | | 5x-7=-5x-3 | | 5y-y+1/2-y-1/4-y=3/7 | | 26=-85y | | -7k+11=-8k+2 | | 8x+9/3=x |